
Exam PPP

April 10, 2018

- Put your name and student number on each answer sheet.

- Answer all questions short and to the point, but complete; write legible.

- Final point grade = total number of points/10.

1. Pions: isospin and decays (25 points)
The pion is the lightest meson and it has a spin and parity of JP = 0− (pseudoscalar). This
meson is composed a light quark and antiquark, e.g. q = (u, d). The isospin (I) of the light
quark is I = 1/2 with Iz = +1/2 for the u quark and Iz = −1/2 for the d quark. The u quark
has an electric charge of +2/3e and the charge of d quark is −1/3e. The d quark (5 MeV) is
slightly heavier than the u quark (2 MeV), but both much smaller than the mass of the pion
itself (140 MeV). The isospin of the pion is one (I = 1).

a) Rotations in isospin space (u ↔ d) are considered as a good symmetry for the strong
interaction leading to the conservation of isospin. The mass differences between the three
charged-pion states are very small as a consequence of isospin symmetry. Explain the origin
of isospin symmetry and discuss possible sources that explicitly break the symmetry.
Isospin symmetry follows from SU(3) color symmetry. The fact that the strong interaction,
e.g. gluon exchange, is blind for the type of quark flavor and the fact that the up and down
quarks have masses that are practically zero compared to the masses of hadrons, leads to
an effective SU(2) flavor symmetry for q=(u,d) as basic representation. The symmetry is
broken because the masses of the u and d quarks do slightly differ. Moreover, the electric
charge differs as well, and hence, the e.m. interaction breaks the symmetry. Note: since
the word “origin” could also be read as a historical origin, the answer could also be that
Heisenberg made a proposal in which neutrons and protons were considered as identical
particles if one switches of the e.m. interaction and ignore the small mass difference. Later
this was traces back to the (u,d)-quark.

b) Discuss the quark-flavor contents and the electric charges of the three z-isospin projected
states (Iz = −1, 0,+1). Explain why the Iz = 0 state is slightly lighter (smaller in mass)
than the Iz = −1,+1 states.
Iz = −1 refers to |dū > state (=π−), Iz = 0 refers to a linear combination if |uū > and
|dd̄ > (=π0), and Iz = +1 corresponds to |ud̄ > (=π+). The charged pions are slightly
heavier because their self-energy is larger due to their electric fields, which is absent for the
π0.

c) Which orbital angular momenta are allowed for a JP = 0− state composed of a qq̄ pair?
Can you form an isospin I = 0 state with JP = 0− and q = (u, d)? Motivate your answers.
The intrinsic parities of the q and q̄ are opposite in sign. Moreover, the orbital angular
momentum between the quark pairs gives a factor (−1)L, hence the parity P = (−1)L+1

for a quark antiquark pair. To conserve parity, L can only be even (0,2, etc.). The total
angular momentum is the quantum mechanical sum of L and the two intrinsic spins of the
two quarks. Since L = 1 is excluded by parity, the only possible allowed configuration will
be that the two intrinsic spins add up to S = 0 (singlet spin state) in combination with



L = 0. Hence, only L = 0 is possible. Yes, one can have an I = 0 pseudoscalar meson. The
lightest one is called the η.

d) The lifetime of the Iz = 0 pion is significantly shorter than of the Iz = −1,+1 pions.
Explain this qualitatively.
The charged pions can only decay with the weak interaction, via an intermediate W boson.
The π0 can also decay electromagnetically via the emission of two photons. The e.m. force
is much stronger than the weak force, and hence, the π0 will have a much shorter lifetime.

e) The Iz = −1,+1 pions decay predominantly into a (anti)muon (µ) and (anti)neutrino pair
(ν). The decay to an (anti)electron and (anti)neutrino is heavily suppressed compared to
the muon decay mode. Explain the origin of this difference. Please note that the muon has
a mass of about 100 MeV, whereas the electron has a mass of 0.5 MeV.
The (anti)muon/electron and (anti) neutrino will decay back-to-back in the center-of-mass
of the pion, hence, their momentum direction will be opposite. The weak interaction only
couples to left(right)-handed chirality components of the (anti)leptons. The neutrino is
practically massless, which means that helicity is equivalent to chirality. For simplicity lets
consider the neutrino in combination with the e+/µ+ (similar discussion for the opposite
C case). The spin direction of the neutrino will be opposite to its momentum direction
(left-handed helicity). Since the pion has no spin and angular momentum is conserved, the
e+/µ+ helicity will be left-handed (LH). The mass of the positron is very small compared
to its momentum, and hence the RH chiral component will be tiny. For the LH-helicity µ+,
the RH chirality component is still sizeable because of its relatively large mass. Therefore,
the muon decay mode will be significantly larger than the positron decay.



2. The Higgs phenomena (25 points)
The Standard Model (SM) of particle physics includes a spinless boson called the Higgs. This
particle was predicted by theory and, later, discovered experimentally in 2012 at LHC. The Higgs
mechanism is related to two phenomena, namely spontaneous symmetry breaking (SSB) and
Gauge invariance. As a reminder, the Lagrangian density for a complex scalar field, φ, is given
by L = 1

2Dµφ
∗Dµφ− V (φ∗φ)− 1

4FµνF
µν . D represents the covariant derivative Dµ = ∂µ + iAµ

whereby Aµ represents a vector field. The dynamics of the field Aµ is described by the field
tensor Fµν = ∂µAν − ∂νAµ. Please note that this Lagrangian corresponds to a simplification of
the actual situation. It represents, the dynamics of a charged boson field, φ, interacting with
an electromagnetic photon field, Aµ. In the SM, it is actually the SU(2)-weak symmetry that
undergoes a spontaneous symmetry breaking, whereby φ represents the Higgs field and A the
Gauge bosons of the weak interaction (W±, Z).

a) Discuss qualitatively the concept of SSB, how this gives rise to the so-called Goldstone
boson and Higgs quanta. How can one see from the expression of L that the symmetry is
spontaneously broken?
The SSB can be identified via the potential term V (φφ∗). Take a potential of the form
V = µφφ∗ + λ(φφ∗)2. Such a potential will be symmetric in U(1), e.g. if you make a
rotation in the complex plane: φ → eiθφ. In the case both µ and λ are positive, you get
a potential that looks like a bowl with a minimum at φ = φ∗ = 0. In that case, you get a
single ground state with expectation value of the field that is zero. For a negative µ and a
positive λ, the potential will look like a mexican hat: still U(1) symmetric, however, with
many possible ground states in the minimum of the hat. This would be equivalent to the
SSB situation. The field φ can be decomposed in a state that corresponds to oscillations
in the direction at which the potential stays constant in the angular direction, and one
in the radial direction which corresponds to a field with of potential that is in first order
quadratic. The first field corresponds to the Goldstone boson, e.g. massless quanta and the
second to a field with a massive quanta that can be called the Higgs. A more appropriate
representation of the field in the case of SSB would be φ = ρeiα, whereby α is the field in
angular direction, e.g. the Goldstone boson, and ρ in radial direction, e.g. the Higgs field.

b) The Lagrangian L as described above has a local U(1) symmetry (=Gauge invariance).
This implies that the transformation φ→ eiθφ and Aµ → Aµ − ∂µθ will leave L invariant.
Show that L is indeed Gauge invariant.
To see that the new Lagrangian is Gauge invariant, we first evaluate the covariant derivative
of the transformed fields φ′ = φeiθ(x):

Dφ′ = (∂φ+ iφ∂θ)eiθ + i(A− ∂θ)φeiθ

= (∂ + iA)φeiθ = Dφeiθ.

Similar expression of Dφ′∗ with term e−iθ, which leads to Dφ′Dφ′∗ = DφDφ∗, e.g. Gauge
invariant. Also the potential term is Gauge invariant simply since it only depends on φφ∗,
and hence, the transformed version will get a factor eiθe−iθ = 1, therefore, φ′φ′∗ = φφ∗.
The field tensor, which only contains derivatives, is also Gauge invariant since

F ′µν = ∂µA
′
ν − ∂νA′µ = ∂µ(Aν − ∂νθ)− ∂ν(Aµ − ∂µθ) = ∂µAν − ∂νAµ = Fµν ,

since ∂µ∂νθ = ∂ν∂µθ. Hence L is Gauge invariant.

c) In the case, there is no spontaneous symmetry breaking, the mass of the field Aµ will be
zero. How would a mass term look like in L and why is it not allowed to explicitly add
such a term to L.



A mass term looks like 1
2m

2A2, e.g. a term that is proportional to the square of the field.
Such a term is clearly not Gauge invariant and can, therefore, not be added explicitly in
the Lagrangian.

d) SSB will lead to an effective mass for Aµ. Demonstrate this by analyzing L in the case of
SSB. What happens to the Goldstone boson? Motivate your answers.
In the case of SSB, the expectation value of the field φ will be shifted away from the origin,
say by a real value of f with units of energy. To first approximation, we can state that
φ = feiα. The term with covariant derivatives will become

1

2
DφDφ∗ =

1

2
(∂ + iA)feiα(∂ − iA)fe−iα =

1

2
(∂α+A)2f2.

Note that we can always make a Gauge transformation A→ A− ∂α which would leave L
invariant. Hence, we can simplify the equation above to a term that summarizes to 1

2f
2A2.

The Goldstone field α can be removed by a transformation, which means it is not physical
quantity, and we obtain an effective mass term for the field A with a mass that is equal to
the shift of the vacuum expectation value, f . In summary, A gets a mass and the Goldstone
boson disappears.

e) The Higgs phenomena as described above explains how Gauge bosons obtain a mass. The
Higgs field is also responsible for the mass of fermions in the SM. Qualitative explain how
the fermions obtain a mass.
The reason that fermions in the SM obtain a mass is directly related to the breaking of
parity of the weak interaction. Only left-handed fields are allowed to participate in the
interaction, which means that only left-handed fermions have a weak charge, and right-
handed fermions do not have a weak charge. In the U(1) equivalent, it would imply that
only left-handed fermions have an electric charge. If one works out the Dirac equation in
terms of left and right-handed components, one obtains an expression similar to

i

(
∂ΨR

∂t
+ αi

∂ΨR

∂xi

)
= mΨL,

i

(
∂ΨL

∂t
− αi

∂ΨL

∂xi

)
= mΨR,

with αi representing three of the four Dirac matrices. Note that in a particular represen-
tation, the fourth Dirac matrix, often called β, interchanges left and right-handed com-
ponents. This gives rise to two coupled equations, each with both left- and right-handed
fields, as illustrated in the above equations. U(1) transformation implies the following rules:
ΨL → eiθΨL and ΨR → ΨR. This since right-handed fields have no charge and left-handed
fields do. Clearly, the above equations are not invariant under U(1), and hence, charge is
not conserved. To solve this, one can replace m by the interaction with the field, φ, with
a term like m = gφ∗ and m = gφ for the right-hand side of the upper and lower equations
above, respectively. The charged field φ would transform like φ → eiθφ and the above
equations become symmetric again under U(1). g is called the Yukawa coupling constant,
and it reflects the coupling strength of the Higgs field with the fermions. In the case of
SSB, one can approximate φ by f (the Goldstone boson field is gone), and hence the masses
of the fermions become gf . Since f is non-zero, the fermions obtain a mass.



3. Kaon oscillations (25 points)
Kaons are mesons that contain one strange (anti)quark combined with a light up/down (anti)quark.
Their spin-parity is the same as for a pion, namely JP = 0−. In this problem, we focus on the
electrically neutral kaons, namely K0 (s̄d) and K̄0 (sd̄). Using a photon beam impinging on a
proton target at rest, one can produce these mesons in the reaction

γ + p→ K0 + Σ+,

whereby Σ+ represents a baryon with quark configuration uus (hyperon). The Σ baryon can
be identified by studying its decay into a nucleon (proton or neutron) and a pion (π0 or π+).
The masses of the proton, K0, Σ+, and π are 938 MeV, 497 MeV, 1189 MeV, and 140 MeV,
respectively.

a) Calculate the minimum energy of the photon beam that would be needed to produce kaons
according to the reaction given above. At this energy, would it be possible to produce as
well K̄0? Motivate your answer.
In the center-of-mass the minimum energy corresponds to the sum of the mass of sigma and
kaon. This one can relate to the lab. by making use of the Lorentz invariant expression:

(E2
tot − p2

tot)lab = (E2
tot)cm.

Note that ptot in the center-of-mass is zero. Hence,

(Eγ +mp)
2 − E2

γ = (mK +mΣ)2,

which leads to

Eγ =
(mK +mΣ)2 −m2

p

2mp
,

which gives a threshold energy Eγ=1046 MeV. In order to produce a K̄0, one should
consider a reaction that preserves upness, downness, and strangeness. The reaction with
the smallest threshold for this, would be γ + p → K0 + K̄0 + p. The threshold for this
reaction is Eγ=1520 MeV which can be obtained by replacing mK + mΣ by 2mK + mp.
Hence, if the photon energy is below this value, it will not possible to produce a K̄0 in the
reaction.

b) The K0 and K̄0 will mix, leading to oscillations. What are the underlying mechanisms on
the quark level that give rise to mixing? Make use of Feynman diagrams to illustrate your
answer.
A typical mechanism that would mix kaons is the so-called flavor-changing neutral currents
or long-distance diagrams with intermediate virtual pion pairs.

c) Express the mass eigenstates of the neutral-kaon system in terms of the flavor eigenstates
(K0 and K̄0) under the assumption that CP is a good symmetry.
The K0 and K̄0 are not CP eigenstates, since CP |K0 >= −|K̄0 > and CP |K̄0 >= −|K0 >.
The quantum superpositions of K0 and K̄0 can give CP eigenstates, namely

|K1 >= (|K0 > −|K̄0 >)/
√

2,

|K2 >= (|K0 > +|K̄0 >)/
√

2,



where K1 is the CP even state and K2 the CP odd state. These are the mass eigenstates
of the neutral kaon system.

d) One of the mass eigenstates, named KS , decays predominantly into a pair of pions with
cτ = 2.7 cm (τ is its lifetime and c is the speed of light). Which orbital angular momenta of
the pion pair are allowed in such decay. Argue that parity must be violated in this reaction.
What about isospin symmetry? Motivate your answers.
The parity of a two-pion system is given by P (π)×P (π)×(−1)L with L the orbital angular
momentum between the two pions and P (π) the intrinsic parity of the pion. Hence, the
parity is given by (−1)L. Since the kaon has no spin, the total angular momentum of the
two-pion system should be zero in order to conserve angular momentum. Since, the pions
have no spin, L = 0, corresponding to an even parity. The parity of the kaon is odd, hence,
parity is violated. Note that the weak interaction does not preserve parity. C-parity is
violated as well since CP is conserved and P is violated. Note that KS corresponds to the
K1 mass eigenstate. The isospin of a kaon is 1/2, since it is composed of one light quark.
The isospin of the two-pion system is either 0,1,2. Therefore, isospin is violated as well in
this weak interaction.

e) The other mass eigenstate is called KL, with cτ = 15.3 m. This particle decays predom-
inantly into three pions. What is the reason why the KL hardly decays into two pions?
Why has the KL a much larger cτ than the KS? Motivate your answers.
The KL is the odd CP eigenstate. Assuming CP conservation (which is only slightly broken
in the weak interaction), it cannot decay into two pions, since the latter is CP even. The
Q-value for the KL → 3π is much smaller than KS → 2π. As a consequence, the phase
space for the KL is very small, which makes its decay rate much smaller than the KS decay.
The decay rate is inversely proportional to the lifetime. Therefore, the lifetime of the KL

is much larger than that of the KS .



4. Electron scattering (25 points)
The structure of the proton can be studied via the elastic electron-scattering process e− + p→
e− + p. For this, an electron beam hits a hydrogen target. The differential cross section in
natural units of this process can be expressed as

dσ

dΩ
=

α2

4E2 sin4(θ/2)

(
E′

E

)(
G1(Q2) cos2(θ/2) + 2τG2(Q2) sin2(θ/2)

)
,

with τ = Q2/(4M2) and G1, G2 are structure functions that represent the squares of the electric
and magnetic form factors of the proton. The fine-structure constant α = e2/(4π) = 1/137 and
M refers to the mass of the proton (938 MeV). The parameter Q2 = −q2 relates to the square of
the four-momentum transfer q = k− k′ whereby k, k′ refers to the four-momentum of the initial
and final-state electron. The incoming electron energy is indicated as E and the energy of the
scattered electron is E′. These energies are related to each other via the recoil formula

E′ =
E

1 + E
M (1− cos θ)

.

The angle θ refers to the scattering angle of the electron in the laboratory frame. You may
ignore the mass of the electron.

a) Make a sketch of the Feynman diagram of the electron scattering process and use this to
motivate why the cross section scales like α2.

Since the amplitude scales with the multiplication of the charges of the two vertices, it will
scale with factor α. The cross section scales as the square of the amplitude, and hence,
scales as α2.

b) Demonstrate or argue that Q2 (q2) is always positive (negative) in electron scattering.
Working out the expression q2, leads to

q2 = (k − k′)2 = k2 + k′2 − 2kk′ = 2m2
e − 2(EE′ − ~p · ~p′)

≈ −2(EE′ − EE′ cos θ) = −2EE′(1− cos θ) < 0,

where we ignored the mass of the electron. Note that E, E′, and (1 − cos θ) are always
positive, thereby, q2 is negative and Q2 positive.

c) The differential cross section as presented in the equation above reveals a divergence when
θ approaches zero (which corresponds to Q2 approaching zero). What is the physical inter-
pretation of this divergence and argue why in practice the cross section will not diverge.
The divergence originates from the infinite range of the electromagnetic force. The photon
is massless and, hence, the propagator term will be like 1/q2. In practise, the charge of the
proton will be screened by electrons at atomic distance scales since the target will be made
of hydrogen atoms.



d) The form factors, represented byG1 and G2, in the above equation take into account the fact
that the proton is not a point-like particle, but that the charge and magnetic components
are distributed in space. For point-like particles, G1 = G2 = 1. For the proton, though,
the form factors are less than one since protons are not point-like particles. Argue that the
two form factors will approach one in the case Q2 approaches zero.
A very small Q2 corresponds to a photon with a very long wavelength. If the wavelength
is much larger than the size of the particle that you probe, the particle will appear as a
point-like object, and hence, the form factors will become one.

e) In the case of deep-inelastic scattering (DIS), very large Q2, the virtual photon will interact
with one of the constituent quarks. To a good approximation, one could describe the process
as (quasi-)elastic scattering of an electron on a single quark. Give an expression for the
cross section in the case of DIS. Use the equation above as a starting point and modify the
elements accordingly. Motivate your result.
In this case, G1 and G2 will be one, e.g. constant as a function of Q2 (in essence Bjorken
scaling). The fine structure constant α will be become α×eq whereby eq the fraction charge
of the quark (2/3 or −1/3), since the charge of the object will become fractional. The mass
M will be replaced by the constituent mass of the quark, which is about 1/3 of the proton
mass. One has to sum over the contribution of all three constituent quarks, assuming that
the process may be approximated by an incoherent sum.



This exam has been drafted by J.G. Messchendorp and verified by C.J.G. Onderwater.


